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ABSTRACT

In this preliminary study involving advanced CFD codes, an incremental for-
mulation, also known as the "delta" or "correction" form, is presented for solving
the very large sparse systems of linear equations which are associated with aerody-

namic sensitivity analysis. For typical problems in 2D, a direct solution method can
be applied to these linear equations in either the standard or the incremental form,
in which case the two are equivalent. Iterative methods appear to be needed for

future 3D applications, however, because direct solver methods require much more

computer memory than is currently available. Iterative methods for solving these
equations in the standard form result in certain difficulties, such as ill-conditioning

of the coefficient matrix, which can be overcome when these equations are cast in

the incremental form; these and other benefits are discussed herein. The method-
ology is successfully implemented and tested in 2D using an upwind, cell-centered,
finite volume formulation applied to the thin-layer Navier-Stokes equations. Re-

sults are presented for two laminar sample problems: 1) transonic flow through a
double-throat nozzle, and 2)flow over an isolated airfoil.



1.0 Introduction

For many complex flow fields of interest in practical engineering problems, accurate detailed
analyses are now possible using supercomputers and advanced software; these codes have been
developed in recent years through an intensive research effort focused in the discipline now
known as Computational Fluid Dynamics (CFD). For these advanced CFD codes to become
more useful as practical design tools, additional software is needed which will efficiently provide
accurate aerodynamic sensitivity derivatives which are consistent with the discrete flow solutions
of the particular CFD code of choice. The theme of this report is the ongoing development of
a methodology for calculating these derivatives.

A sensitivity derivative is defined as the derivative of a system response of interest (e.g.,
the lift or drag of an airfoil) with respect to an independent design variable of interest (e.g., a
parameter which controls the shape of an airfoil). In a typical design environment, a very large
number of analyses are often made in determining the "best" design. An efficient method for
calculating accurate sensitivity derivatives can be applied in several different ways to significantly
reduce the number and/or computational )st of these multiple analyses. This couW be critical
for the integration of advanced CFD coues into a systematic design methodology\ where the
computational cost of a single flow analysis can be extremely high, particularly in 3'.

One method of a very general yet conceptually simple nature for computing aeroynamic
sensitivity derivatives is the method of "brute force" finite differences. With this n*thod,
assuming forward finite difference approximations are used, the CFD flow analysis code is used
to generate one converged flow solution for a slightly perturbed value of each design variable for
which sensitivity derivatives are required. The principal drawback of this method is clearly that
of computational cost, since the number of flow analyses required in a typical design problem can
be extremely (i.e., prohibitively) large, particularly when the number of design variables is large.

As a typically less costly alternative to the finite difference approach, aerodynamic sensitivity
derivatives can (in principle) be computed by direct differentiation of the governing equations
which control the fluid flow. If the continuous governing equations are differentiated prior to
their numerical discretization, the method is known as the "continuum" approach. In contrast,
if the resulting algebraic equations which model the governing equations are differentiated
following their discretization, the method is known as the "discrete" approach. In developing
efficient methods for computing these sensitivity derivatives and their subsequent application to
aerodynamic design problems, researchers have been and remain active; Refs. 1 through 24 are
a representative (but not exhaustive) sample of articles which are germane to the present effort.
Reference 8 addresses the distinction between the aforementioned "continuum" and "discrete"
approaches, and Ref. 24 is a concurrent study which addresses related issues of specific interest
here.

The present study represents an extension of the recent efforts of Refs. 13 through 23, where
using the discrete approach, fundamental sensitivity equations are derived by direct differentiation
of the system of nonlinear algebraic equations which model either the Euler or thin-layer Navier-
Stokes (TLNS) equations for 2D steady flow. This differentiation results in very large systems
of algebraic linear sensitivity equations which must be solved to obtain these derivatives of
interest. In Refs. 13 through 23, the fundamental vensitivity equations are solved in what is
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henceforth referred to herein as the "standard" (i.e., non-incremental) form. Furthermore, in these
references, a direct solver method is applied to solve these equations; the single exception is Ref.
23, where a hybrid direct solver/conventional iterative approach is adopted for an isolated airfoil
example problem. There are some important advantages in using a direct method when feasible;
these are discussed in the references and also noted in a later section of this report. However,
the most serious disadvantage of a direct solver method is the extremely large computer storage
requirement, which for practical 3D problems appears to be well beyond the current capacity of
modem supercomputers; this capacity can even be exceeded in 2D on very fine grids.

In an effort to circumvent the computer storage limitation for the direct methods, this
preliminary study focuses on fundamental algorithm development for the efficient iterative
solution of the aerodynamic sensitivity equations. That is, the principal motivation and objective
is to develop a solid framework in 2D from which future extensions to 3D will be feasible. In
general, one of the most serious difficulties encountered in the development and/or application
of iterative techniques is that of poor overall conditioning and lack of diagonal doi.;.inance
in the coefficient matrix. Unfortunately, this is a very common occurrence in the coefficient
matrices of interest here; the severity varies greatly and depends on many factors. This problem
can manifest itself in either poor performance or even complete failure (i.e., divergence) of an
iterative algorithm.

A computationally useful property of the "incremental" form (also commonly known as the
"delta" or "correction" form) can be effectively exploited to combat these problems of poor matrix
conditioning. This property is that "approximations of convenience" can be introduced into the
coefficient matrix of the equations, without affecting the final converged values of the sensitivity
derivatives. The approximations must be "reasonable" enough that the resulting iterative strategy
is convergent. In contrast, if any approximations are made to the coefficient matrix of the
equations in the standard form, then the computed sensitivity derivatives cannot be consistently
discrete; that is, they will not be the correct derivatives of the algebraic equations which are
solved when generating the steady-state flow solution. In the implementation of the incremental
formulation herein, a judiciously selected block-diagonally dominant matrix is introduced as
an approximate replacement for the original ill-conditioned left-hand side coefficient matrix.
The positive impact which this can have on the development of iterative techniqtv ,r the
aerodynamic sensitivity equations is discussed herein, and illustrated in the examp1c iioblems.
Additional benefits which might be derived from this flexible nature of the "delta" formulation
are also discussed.

The remainder of this report is organized as follows. The next section, presentation of theory,
is further subdivided into five subsections which review and discuss: 1) the governing equations,
2) the spatial discretization and implicit formulation, 3) the fundamental sensitivity equations -r
in standard form, 4) basic linear equation solving in incremental form, and 5) incremental
solution of the equations of sensitivity analysis, where some significant implications of this
formulation compared to the standard form are noted. Following the presentation of theory ..
section, computational results are presented, illustrating application of the methodology to two
laminar viscous flow example problems: 1) transonic internal flow through a double-throat nozzle
and 2) external flow over an isolated airfoil. The last section is a summary where conclusions
are given. In an appendix, the direction of ongoing and future work is discussed, where sample C

3 &O.t l"'
'; r '

A I



results are shown from the successful application of a spatially-split approximately factored
strategy for efficiently solving the sensitivity equations in incremental form.

2.0 Presentation of Theory

2.1 Governing Equations

The governing equations in this study are the 2D thin-layer Navier-Stokes (TINS) equations;
they are

1 aQ - R(Q) (1)

where
R(Q) = aF(Q) _G(Q) + a Gt(Q) (2)

0 0,77 0 77

Q = [p, pu, pv, peO]T (3)

The vector, R(Q), is known as the residual, and is clearly null for steady flow. The elements of
the vector, Q, are the conserved variables, where, p is density, u and v are velocity components
in Cartesian coordinates, and eo is total energy (i.e., eo = e + u , where e is the specific
internal energy of the fluid). The inviscid flux vectors, F(Q) and G(Q), are

F(Q) = Lx F(Q) + Y G(Q)

6(Q) = 9F(Q) + -YG(Q)

A transformation to generalized ( , 77) coordinates from Cartesian (x,y) coordinates has been
made in Eq. (1), where x, y,qx, 71y are "metric" terms, and J is the determinant of the Jacobian
matrix of this transformation. The Cartesian flux vectors, F(Q) and G(Q), are

F(Q) = [pu, pu2 + p, puv, (peo + p)u]T

G(Q) = [pv, puv, pv2 + p, (peo + p)v]T (5)

The pressure, p, is evaluated using the ideal gas law

p (- peo - p U2  V2) (6)

and -f is the ratio of specific heats, taken to be 1.4. The thin-layer viscous terms in generalized
cc-rdinates are

ti (Q) P [gV= gV2,gV3,gV] (7)
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where
V 0

A2= aiu + a3V,7

93= a3U71 + Q2Vq?

gv. = aj (u) + 2 a2v (V

+a3(uv)'l + Pr(-y- 1) (a2),, (8)

Ce,= 'y- 71 2 a . +47y

(ix Y 14 --- 3 T)

3 j ),

The molecular viscosity is given by 1A, Stokes' hypothesis for the bulk viscosity (A =
- 2p/3) has been used, a is the speed of sound, Pr is the Prandtl number (taken to be 0.72),
and ReL is the Reynolds number. Nondimensionalization of Eq. (1) is with respect to po,
and U(,, the freestream density and velocity, respectively. The physical coordinates (x,y) are
nondimensionalized by a reference length, L, and the viscosity is nondimensionalized by p,,, the
molecular viscosity of the freestream. The nondimensional molecular viscosity can be computed
using Sutherland's law and a reference temperature, T., the static temperature of the freestream.
For additional simplicity here, however, the molecular viscosity is taken to be constant, equal
to that of the freestream.

2.2 Spatial Discretization and Implicit Formulation

Computationally, the TLNS equations are solved here in their alternative integral conserva-
tion law form using an upwind cell-centered finite volume formulation (see Refs. 25 through
31), where the residual at each cell is evaluated as a balance of inviscid and viscous fluxes
across cell interfaces. Upwind evaluation of the inviscid fluxes is accomplished by upwind
interpolation of the field variables, Q, from the approximate cell centers to the cell interfaces,
where the flux-vector splitting procedure of van Leer (Ref. 32) is employed. In this study,
third-order accuracy is used for the inviscid flux balance in the streamwise ( ) and in the normal
(q) directions. The finite volume equivalent of second-order accurate central differences is used
to approximate the thin-layer viscous terms. This results in a higher-order accurate algebraic
approximate representation of the residual at each cell in the domain. When assembled globally
including all cells and boundary condition relationships, this can be expressed as

{R(Q*)} = {0} (9)

where { Q* } is called the "root" (i.e., the steady-state value of the field variables). Therefore, Eq.
(9) represents a large coupled system of nonlinear algebraic equations; thus finding a steady-state
solution to the TLNS equations has been replaced (approximately) by the problem of finding

the root, {Q*}, of this set of algebraic equations. In Eq. (9) and henceforth, the notation, '{ }',
indicates a global column vector.



The TLNS equations are discretized in time using the Euler implicit method, followed by a
Taylor's series linearization of the discrete equations in time about the known time level. This
results in a large system of linear algebraic equations at each time step, which is

([Q ["'(Q])flAQl = {Rn(Q)} (10)

{Qn+l} = {Qn} + {nQ} (11)

n = 1,2,3,...

Equations (10) and (11) represent the fundamental implicit formulation for integrating the
TLNS equations in time to steady-state. In these equations, 'n' is the time iteration index,
and {AQ} is the incremental change in the field variables between the known (nth) and the
next (nth+1) time levels. The matrix, I is diagonal, and contains the time term. The

large Jacobian matrix, [- -- -]( , is sparse and has a banded structure, with nine diagonals, the
individual elements of which are 4x4 block coefficient matrices. In addition to its use in Eq.
(10) above, this important Jacobian matrix plays another central role in this study, which will
be shown later.

In principle, Eq. (10) can be repeatedly solved directly (using Eq. (11) to update the

field variables), as the solution is advanced to steady-state; for very large time steps, the direct
method represents Newton's root finding procedure for nonlinear equations. The direct method
however is not necessarily the most efficient procedure with respect to overall CPU time (Ref.
33), and the large storage requirements of the method make it infeasible in 3D. Therefore,
more commonly, an iterative algorithm is selected for use in the repeated solution of Eq. (10).
Popular choices of these iterative algorithms include approximate factorization (AF) (Ref. 34),
conventional relaxation algorithms (Refs. 29, 30), the strongly implicit procedure (SIP) (Ref.
35), and preconditioned conjugate gradient methods (Refs. 36, 37), to name a few.

It is noted that Eqs. (10) and (11) are an incremental formulation for solving the nonlinear
problem of Eq. (9). If convergence is achieved, the steady-state solution, {Q*}, only depends
on what is implemented in the discrete formulation of the residual vector on the right-hand side
of Eq. (10). It is also implied that this solution is independent of any approximations which are
made in the coefficient matrix of Eq. (10). The final solution is also independent of the initial
guess, and all transient solutions which are generated prior to convergence.

For typical advanced CFD flow codes which employ the implicit time integration formulation
of Eqs. (10) and (11), the following approximations are often seen in the coefficient matrix of
Eq. (10) (the list is a representative but not exhaustive one):

1) A first-order accurate upwind spatial discretization of the implicit terms is used, even
though a higher-order accurate spatial discretization, either upwind or perhaps even
central "differences" (Ref. 29), is used on the right-hand side of the equation.

2) A consistently linearized treatment of the boundary conditions in "delta" form is typically
neglected. In particular, a fully consistent treatment of the implicit terms resulting from
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the "periodic" boundary conditions of "C" and "0" meshes and also of the implicit terms
across the zonal interfaces of multiblock grids is no' ed.

3) Only approximate solutions of Eq. (10) are actually generated at each time step with
the use of iterative methods, in order that each time step is efficiently completed.

The preceding examples and many others not mentioned are "approximations of convenience"
and are made on the left-hand side of Eq. (10) in order to influence the nature of the
resulting algorithm which is to be used in finding the solution. These may be introduced for
computational simplicity of implementation or overall efficiency, or both. This flexibility of
the delta formulation, which allows approximations to be introduced into the left-hand side
coefficient matrix without influencing the final solution, can also be exploited in the solution of
the linear aerodynamic sensitivity equations, as will be seen in subsequent sections.

2.3 Fundamental Sensitivity Equations In Standard Form

Consider the vector, /, whose elements are independent variables, typically called the design
variables. Some, none, or all of these variables may be related to the geometric shape of the
boundary surface of the flow problem of interest. Computationally, the geometric shape of the
domain is defined by the mesh upon which calculations are made; the complete vector of (x,y)
coordinates which defines the mesh is represented symbolically herein as { k}. For a steady-state
solution, the discrete residual vector given by Eq. (9) is expressed now in the following form

= {O} (12)

where the explicit dependence of the discrete residual on the computational mesh, { X}, as well
as its explicit dependence (if any) on d has now been emphasized. Direct differentiation of Eq.
(12) with respect to /k, the kth element of 1, yields

dt9 Q 00/kJ L aO1k j19AJ (13)
Term 1 Term 2 Term 3

Equation (13) is an exact derivative of the discrete algebraic residual vector; this procedure is
known in Refs. 2 and 4 as the quasi-analytical method. The Jacobian matrix, [k&], of Eq. (13)
is identical to that found in the fundamental implicit formulation for numerical time integration
(Eq. (10)) of the TLNS equations, except that is evaluated at steady-state, {Q* }. It is thus

well understood. The solution vector, {j }, is the sensitivity of the complete vector of field

variables with respect to the kh design variable. The matrix, a is the Jacobian matrix of the

discrete steady-state residual vector with respect to the complete vector of (x,y) grid coordinates;

it is documented in detail in Ref. 17. The vector, { 1 }, of Term 2, contains what is referred to
here as the grid sensitivity terms; these are the sensitivity derivatives with respect to /3k of each
'x' and 'y' coordinate point of the entire computational mesh. The treatment of the terms of the
grid sensitivity vector is given special consideration in Refs. 18, 23, 38, and 39. The vector,
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{ 'k }, accounts for derivatives resulting from explicit dependencies (if any) of the residual
vector on /9k, and additional discussion concerning this is found in Ref. 21. In the event that
!k is not a design parameter for the geometric shape, then the second term of Eq. (13) will
be zero, since the vector, A is then null. If k is a geometric shape design parameter, its
effect on the residual (Eq. (12)) will usually be felt only through the grid, and the final term
of Eq. (13) will generally be zero.

It is strongly emphasized that all boundary condition relationships must be treated in a fully
consistent manner, and included in Eq. (13) above. Proper boundary condition treatment should
be included in the Jacobian matrices, [ ] and [ , as well as in the vector, { D' }"-If accurate
results are to be obtained using the present methods, it is critical that this is not neglected here
as it often is in the fundamental implicit time integration formulation (i.e., Eq. (10)). Detailed
documentation on the consistent treatment of the boundary conditions and its importance in
these equations is found in Refs. 21, 22, and 23.

Note that Eq. (13) is a linear system of equations which in principle can be solved directly
for the vector, {-.Q }" Of course, the solution of Eq. (13) must be repeated for each element of

(i.e., for each design variable) for which sensitivity derivatives are desired. However, a single
LU factorization of the coefficient matrix can be repeatedly reused for multiple solutions (i.e.,
for multiple design variables) in the forward and backward substitution operations. The reuse
of the LU factorization can represent a substantial savings in computational work, particularly
when the linear system of Eq. (13) and/or the number of design variables of interest is large.

The solution of Eq. (13) for the vector, {aQ }, is not the final goal; rather, the sensitivity
derivatives of some specific system responses are sought (e.g., for an airfoil, the sensitivities
of the lift, drag, and moment coefficients might be required). Consider therefore the jh system
response of interest, Cj, which in general can be functionally dependent on the steady-state field
variables, {Q* }, the grid, {X}, and also explicitly on the design variables, 3; that is

cJ = (14)

The total rate of change of the jhn system response, Cj, with respect to the kth design variable,
13k, is then given by

dCj f { C TroQ. I roc oTr X I Cj
jOX N~fk aflfalWk0

Term 1 Term 2 Term 3

where in Eq. (15), Term(s) 2 and/or 3 could be zero, depending on the particular system response
(Cj) and design variable (/0k) of concern. Solution of Eq. (13) therefore provides the vector,{ *}' which is needed in Eq. (15). Furthermore, for geometric shape sensitivity derivatives,Wka 11
the grid sensitivity vector, 1 j, of Eq. (13) is reused, if needed, in Eq. (15). Specific ancillary
sensitivity relationships of the type given by Eq. (15) which are used in the present study for
computing sensitivity derivatives of aerodynamic force coefficients are presented in Ref. 23.
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On the left-hand side of Eq. (15) above, the notation for a total derivative has been used,
indicating that the total rate of change of Cj with respect to A3 k is included in the expression,
and to distinguish it from the partial derivative term (Term 3) on the right-hand side of the
expression. However, it should be understood that this derivative is still a partial derivative
in the sense that Cj is in general a function of multiple independent design variables. For
consistency, this notation will continue to be used throughout.

A closely related alternative procedure for computing sensitivity derivatives, known as the
adjoint variable approach, is easily developed using the relationships presented thus far. This
begins by combining Eqs. (13) and (15) to yield

dC(=C TIQ OC T R I OCj

OQ* 01 O

+{Ak}T([-]{ + [ {II :} { / 4k}) (16)

The adjoint variable vector, f Aj 1, is arbitrary at this point, since the inner product of ( Aj} is
taken with the null vector, from Eq. (13). Thus there is no net change from Eq. (15) to Eq.
(16), since the entire additional term on the right-hand side of Eq. (16) is zero, for any and all
{ Aj). Rearranging, Eq. (16) becomes

dCj _ j IT T OR AX + j}T OR

\IJ+L T [T +d~k AX OX]j 190OIk 10 k 00 ~fk
+({ o3 }T rR (Q (17)

+ ~~ + {fAj} I QJ M] 3

The necessity of evaluating the vector, 1.-}, using Eq. (13) is eliminated foi qk by

selecting the vector, {Aj), such that the coefficient of { } in Eq. (17) is null. That is,
selection of {Aj} which satisfies

{"} + {) }T[ ] = {0}T (18)

implies
-0-'iQ" C} (19)

Therefore, following the solution of Eq. (19) for this particular choice of the adjoint variable
vector, { A }, the sensitivity derivatives of Cj with respect to all A3k are computed by

dCj ( T [) M] A _ I + Cjdfl k  f- j '{ 00- + +AjT{ k } (0
LOX/3Okk afl axi~c
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Solution of the linear system of Eq. (19) for (Aj} is analogous to the solution of Eq. (13)

for {91,- -, in that the respective coefficient matrices are transposes of each other. A particular
solution, {(Aj), is valid only for a specific system response, Cj, and thus solution of Eq. (19)
must be repeated for each different system response of interest. If Eq. (19) is solved directly,
however, multiple solutions require only a single LU factorization of the coefficient matrix,
which is repeatedly reused for an unlimited number of right-hand side vectors, { } (i.e., for
an unlimited number of different system responses of interest).

It is simple to verify from the preceding equations, and significant to note, that each solution,

{ j }, of Eq. (13) for a particular design variable can be used for an unlimited number of
different system responses. In contrast, however, each solution, (A j, of Eq. (19) for a particular
system response can be used for an unlimited number of different design variables. Therefore,
in terms of computational work, if the number of system responses of interest is larger than
the number of design variables, then sensitivity derivatives should be computed by solving Eq.
(13). Otherwise greater computational efficiency is obtained using the adjoint variable method.
Despite this difference which has been noted between these two closely related procedures, it is
emphasized that the two methods are equivaleitt in the sense that they yield identical values for
the sensitivity derivatives, if properly implemented computationally.

The significance of the well-known difference in the computational efficiency of the two
methods is mitigated greatly if a direct method is used to solve the linear systems (i.e., either
Eq. (13) or Eq. (19)), because the LU factorization must only be done once for multiple right-
hand side vectors. However, this distinction becomes very important if an iterative strategy is
used to solve these linear systems, particularly if the difference between the number of design
variables and the number of system responses of interest is very large. This difference occurs,
of course, because with iterative methods, the computational work required for solution of each
linear system is approximately equal to the computational work required to solve the first one.

Summarizing briefly, it has been shown that calculating aerodynamic sensitivity derivatives
using the discrete direct differentiation method requires the solution of large linear systems of
equations of the type given by a choice of either Eq. (13) or Eq. (19). Henceforth in this
report, these two systems of linear equations are known as the aerodynamic sensitivity equations
in standard form. Fundamertal algorithm development for the iterative solution of one of these
two linear systems is easily extended and applied to the other, since as noted previously, their
respective coefficient matrices are transposes of each other. In the example problems for which
sensitivity derivatives are calculated in a later section, actual implementation and testing of the
methods proposed herein is accomplished using Eq. (13), although the adjoint variable method,
Eq. (19), could also have been used. When the linear aerodynamic sensitivity equations are
solved in standard form, it should be noted that no approximations can be introduced into any
of the terms, without simultaneously introducing error into the resulting sensitivity derivatives.
In this form, the framework to support the development of iterative methods is thus rigid and
restrictive.

As a consequence of the preceding discussion, for the higher-order accurate upwind spatial
discretization which is selected herein for the flow analysis, a consistent higher-order accurate
upwind spatial discretization including a fully consistent treatment of all boundary conditions is
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required in the left-hand side coefficient matrix of the sensitivity equations (in standard form).
Furthermore, there is no "time term" added here to enhance each element of the diagonal, as
seen (in contrast) in the implicit time integration formulation of Eq. (10). Unfortunately, the
resulting coefficient matrix in this case is not diagonally dominant (Ref. 29), and consequently
the computational performance of traditional iterative methods for the sensitivity equations in
standard form is expected to be poor, or even fail. If the present methods were applied using a
popular "central difference" discretization of the inviscid terms in the flow solver, the diagonal
dominance of the resulting sensitivity equations would become far worse. Therefore, it is this
particular difficulty (i.e., the lack of a sufficiently strong diagonal) and how it can be overcome
which is of principal concern in the development of the incremental form of the equations in
the following sections.

2.4 Basic Linear Equation Solving in Incremental Form

Consider the linear system of algebraic equations in the general form

[A]{Z*} + {B} = {0} (21)

where {Z* } is the solution vector. In treating the problem of so'ving Eq. (21), in essence a "root
finding" problem, application of Newton's method (traditionally used in root finding for nonlinear
equations) to the linear problem yields the basic two-step iterative incremental formulation

Step 1 - [AIlmAz = [AI{Z } + {B) (22)

Step 2 {zm+l} = {zm } + {m AZ} (23)

m = 1,2,3, ....

where m' is an iteration index, and {mAZ} is the incremental change in the solution from the
known (mth) to the next (mth+l) iteration level. An initial guess, I ZI }, is required to begin
the procedure, which in the present study is taken everywhere as zero. If Newton's method is
applied strictly, the coefficient matrix [A] is equal to the matrix [A], and clearly the two-step
iterative strategy of Eqs. (22) and (23) for the linear problem converges on the first iteration,
for any initial guess. Therefore, in this case, solution of the linear system in the standard form
(Eq. (21)) and sclution in the incremental form (Eqs. (22) and (23)) are equivalent.

More generally, however, the matrix [A] is not necessarily equal to the matrix [A]. The
matrix [A] can be any convenient approximation of the matrix [A] with the restriction that [A]
must approximate [A] well enough so that the two-step iterative procedure (Eqs. (22) and (23))
converges (or, at the very least, car be forced to converge by including a strategy such as under-
relaxation). Simply stated, [A] should capture the essence of [A]. Furthermore, because the
equations have been cast in "delta" form, the incremental method produces the unique solution
of Eq. (21), 1Z* ), if convergent. In this formulation, the purpose of the left-hand side operator
is to drive the right-hand side vector to zero. The final converged solution, {Z* }, depends only on
the terms on the right-hand side of Eq. (22), and thus it is emphasized here that approximations
to any of these terms, including the matrix [A], will produce erroneous final results.
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In principle, the linear system of Eq. (22) can be solved either directly or iteratively, at each
mth iteration level. If a direct method is chosen, only a single LU factorization of the coefficient
matrix, [A], is needed, where the LU factorization is then reused for an unlimited number of
iterations, including when multiple solutions of Eq. (21) are sought for different values of the
vector, { B}. If the coefficient matrix, [A], is too large, an iterative algorithm will be the only
recourse because of computer storage limitations.

With the choice of an iteratve algorithm, an "inner" iteration index, i', is established at
Step I (Eq. (22)), and the iteration cycle over Steps I and 2, having index 'm', becomes the
"outer" iteration loop. If the left-hand side coefficient matrix, [A], is diagonally dominant, then
convergence of the iterative method of choice over the index, 'i', is assured for each and every
linear sub-problem at Step 1. In addition, overall convergence of the procedure over the outer
index, 'm', is assured if, as discussed previously, the matrix [A] is an adequate approximation
of the matrix [A], and furthermore, if each linear sub-problem at Step 1 is converged to a
sufficiently close tolerance (whatever that tolerance may be).

As a simple example of the preceding discussion, if a conventional relaxation algorithm (one
of many possibilities) is selected, then the matrix, -[A], is divided into two parts; that is

-[A] = [M] + [N] (24)

The iterative incremental strategy becomes

Step 1 IM]{m'iAZ} = [A]{Z m} + {B} - [N1{mi-LZ} (25)

i= 1,2,3,..., (imax)nm

Step 2 {Zm+ l } - {Zrn} + {m(imax)m Z} (26)

m= 1,2,3,.

where in the above, (imax)m is the number of inner or sub-iterations required to converge the mth

linear sub-problem atStep 1 to the desired tolerance. The particular choice of the splitting in Eq.
(24) of the matrix, [A], is made judiciously, such that Eq. (25) can be repeatedly solved very
efficiently in terms of CPU time and computer storage. The most popular choices of the splitting
in Eq. (24) result in either the Jacobi or the Gauss-Seidel algorithms of either the point or the
line relaxation types. The use of the "delta" form line Gauss-Seidel algorithm with an "inner"
and "outer" loop is investigated in Ref. 40 in the solution of the nonlinear 2D flow equations.

2.5 Incremental Solution of the Equations of Sensitivity Analysis

Application of the fundamental incremental formulation for linear equation solving, Eqs (22)
and (23), to the linear system of Eq. (13) for computing aerodynamic sensitivity derivatives,
gives
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Step 1 - [ SR]{-0k}(27)

Step 2 0/3 k 19I,0/3k 9/0kJ (28)
m = 1,2,3, .....

where

{ m kQ - [ -]f Qm  +R] +dRm (29)
190k (9 [Q] a8/k J X L8Ja3kJ 1/kJ dj~7

where the coefficient matrix 7q approximates the matrix [A , and will be discussed subse-

quently, in greater detail. The vector, {SM (-) }, henceforth called the sensitivity residual
vector, represents the total derivative of the discrete (flow analysis) residual vector, Eq. (12),
with respect to k. From Eqs. (13) and (29), clearly the sensitivity residual vector must be
driven to zero in order to find the solution, , of Eq. (13), which is of course the objective
of the incremental strategy of Eqs. (27) and (28). Approximations must not be made to any
terms in the sensitivity residual vector, taking particular care that a consistent treatment of all
boundary conditions is included here, if the converged solution is to yield the correct (i.e., the
consistently dis_-ete) sensitivity derivatives. The final solution at convergence depends only on
the terms of this right-hand side vector.

It is proposed that a first-order accurate upwind spatial discretization of the inviscid terms

is a suitable selection for use in the coefficient matrix, [RI, of Eq. (27), as an approximation
here to the higher-order accurate upwind discretization of these terms. It is believed intuitively
that this approximation will be a successful choice, noting that this selection is also a common
approximation of convenience which is successfully used in the coefficient matrix of the implicit
time integration formulation, Eq. (10). It is most significant to note that by design, in this choice,
the block-diagonal dominance is now obtained and maintained in the left-hand side coefficient
matrix (Ref. 29) of Eq. (27).

In this preliminary study, the feasibility of using this first-order accurate upwind approximate
treatment of the inviscid terms is investigated in the example problems. Of principal concern, of
course, is whether or not this particular approximation yields a sufficiently accurate representation
of these terms so that a convergent method results. However, if the proposed methodology is
successful, as it is found to be in the subsequent example problems, then the door has been opened
for the possible future inclusion of numerous additional "approximations of convenience" in the
left-hand side coefficient matrix. Of particular interest in future studies, of course, would be
some of the same previously noted approximations commonly included in the coefficient matrix
of the implicit formulation for time integration (Eq. (10)) of the flow equations. In other words,
typical existing CFD flow solvers (i.e., those which employ iterative delta form implicit time
integration methods) might be adapted directly for use in solving the linear sensitivity equations.
The feasibility of this proposal is confirmed in the appendix, where sample results are presented
using the well-known spatially-split approximate factorization (AF) (Ref. 34) algorithm.
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In the present preliminary examination of the proposed methodology, each linear sub-
problem (i.e., Eq. (27)) is solved by direct LU factorization (followed by forward and backward
substitution) using a conventional vectorized banded matrix solver (Ref. 33) which takes
advantage of the fact (in terms of computational work and storage) that outside of the bandwidth,
all of the elements are zero. A single complete sensitivity analysis requires a single LU
factorization of the coefficient matrix, which is repeatedly reused in the forward and backward
substitutions at each iteration over Eqs. (27) and (28), and for all design variables of interest.
Note that the direct solution of Eq. (27) now requires only one-half of the computer storage
of that which is required in the direct solution of the equations in standard form, Eq. (13),
since the bandwidth of the coefficient matrix is cut in half by the use of the first-order upwind
approximation. In addition, less computational work is required in the LU factorization of this
coefficient matrix, and in the forward and backward substitutions (although only a single back-
solving procedure is required per design variable for a direct method applied to the standard
formulation).

The strategy proposed above is described as a combined iterative/direct solver method. It is
felt however that the algorithm remains a direct solver method in its essential character, because
despite the "factor of two" reduction in computer storage requirements, it remains infeasible
for extension to practical 3D flow problems. However, the method will enable a significantly
larger problem to be done in 2D. The present methodology will become purely iterative in
character (and thus in principle extendable to 3D) when, as illustrated in Eqs. (25) and (26),
an iterative method replaces the present direct solution of each linear sub-problem of Eq. (27).
As an example given in the appendix, the AF algorithm is used to efficiently solve Eq. (27)
approximately at each mih iteration (without the use of sub-iterations), resulting in a convergent
overall method. It is noted that convergence of iterative methods over each linear sub-problem

(i.e, over each "inner loop") is assured, since [5] is block-diagonally dominant.

Finally, it is noted here that if the adjoint variable formulation for computing the sensitivity
derivatives is preferred, application of the incremental formulation to the linear system of Eq.
(19) for computing the adjoint variable vector, {Aj }, yields

Step 1 [ ] T{ m AAj} = {Vm(A n)} (30)

Step 2 {An+} ={A) + {mA} (J I (31)
m = 1,2,3,. ....

where

{ [(A]) = I { { lQ (32)

The vector, {Vm (A) }, known here as the adjoint variable residual vector, must be driven to
zero in order to find the solution, (Aj }, of Eq. (19), which is the objective of the incremental
strategy of Eqs. (30) and (31).
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3.0 Computational Results

Aerodynamic sensitivity derivatives computed using the incremental formulation, Eqs. (27)
and (28), are presented for two laminar example problems, and are compared with the same
results reported in Ref. 23 for the identical example problems. In Ref. 23, these same
sensitivity derivatives were computed using direct solver based methods applied to the standard
formulation of Eq. (13). It is significant to note that at the outset of this study all attempts
to solve these sensitivity equations in standard form using a conventional line Gauss-Seidel
iteration method (Refs. 29, 30) for these two example problems diverged, despite efforts to
force convergence through the use of successive line under-relaxation. This failure is attributed
to the ill-conditioning of the coefficient matrix.

3.1 Internal Flow - Double-Throat Nozzle Problem

The first example problem is that of an internal flow through a double-throat nozzle, where
the flow is accelerated from a Mach number on the inflow boundary of about 0.10, to a Mach
number which exceeds 2.80 at some places on the outflow boundary. The Reynolds number,
REL, is 100, based on a reference length, L, of one-half the height of the nozzle at the smaller of
the two throats. Figure 1 illustrates the geometry and computational grid which is used, and Fig.
2 depicts the Mach contours of the steady-state solution; both of these figures are taken from Ref.
23, where more complete information is given. Other studies have been conducted involving
the numerical computation of flow through the geometry of this nozzle, and are documented in
Refs. 41, 42, and 43.

The geometric shape is defined parametrically using analytical expressions which define the
boundaries (i.e., the walls) of the nozzle. Within these analytical expressions, ten geometric
shape design variables are defined, and hence these ten parameters also define the vector, /3.
These ten design variables, #1 through flo, the analytical functions which define this geometric
shape, and also the treatment of the grid sensitivity vectors, { -} through W, o fully

explained in Refs. 23 and 43.

In Ref. 23, the sensitivity derivatives were computed (with respect to I1 through /1o) of
the force coefficients, C. and Cy; these force coefficients are the integrated (over the lower
surface) pressure and skin frictions coefficients, which have been resolved in the 'x and 'y'
directions, respectively. In this earlier study, these terms were calculated by direct solution of the
aerodynamic sensitivity equations in standard form (Eq. (13)), where a single LU factorization
was used in the back-solving operations for all ten design variables. Additionally in the previous
work, the accuracy of the calculations was successfully validated using the method of "brute
force" finite differences, and thus this consistency check is not repeated here.

In Table 1, the sensitivity derivatives of C,, and Cy with respect to the first geometric shape

design variable, 01, are presented. The computed values of { 1) and { el}are presented
here from the solution of the aerodynamic sensitivity equations in incremental form, where
results are given for successively larger reductions in the average global error. Specifically, the
sensitivity derivatives computed using the incremental method are given for a zero, one, two,
three, and four orders-of-magnitude (OM) reduction in the L2 norm of the sensitivity residual
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vector, Eq. (29), which is also the right-hand-side of Eq. (27). In addition, the number of
iterations (over the two-step scheme, Eqs. (27) and (28)) which were required to achieve each
of these successive levels of convergence is also included in the table. In the last row of the
table, the results which were obtained by direct solution of the standard form of the equations,
taken from Ref. 23, also are given. Tables 2 through 10 show results similar to those shown
in Table 1, except that sensitivity derivatives of C, and Cy with respect to /2 through /01o,

respectively, are presented.

For this first example problem, from the results presented in these tables, it is verified that the
diagonally dominant first-order accurate upwind spatial discretization of the inviscid terms in the

matrix, [k], of Eq. (27) is a sufficiently accurate approximation of the matrix, [a], that the
iterative incremental formulation for solving these equations is convergent. It is noted that these
results were obtained without the use of under-relaxation or any scheme to "force" the method to
converge. The solutions appear to be fairly well converged after only a two OM reduction of the
error, and the first four digits (at least) of these sensitivity derivatives do not change as the error is
reduced from three to four OM. Most importantly, the expected result is noted (as a consistency
check), that the "tightly" converged results obtained using the incremental formulation agree
with the results of Ref. 23 which were obtained using the standard formulation.

Strategy Error Number of
Used Reduction Iterations dCx dC

0 0M* 1 -3.877 E+O1 -3.211 E+02

I GM 13 -4.934 E+01 -3.024 E+02

Incremental Method, 2 GM 20 -4.925 E+01 -3.024 E+02
Eqs. (27), (28), (29)

3 GM 27 -4.925 E+01 -3.024 E+02

4 GM 33 -4.925 E+01 -3.024 E+02

Standard Form, Direct N/A N/A -4.925 E+01 -3.024 E+02
Solution of Eq. (13)

Table 1 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, First Design Variable, 01
*OM Refers to the number of Orders-of-Magnitude reduction in the average global error.
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Strategy Error Number of
Used Reduction Iterations dCx dCdfO2 d#l2

0 GM 1 -4.644 E+02 +2.152 E+01

1 M 8 -4.614 E+02 +1.733 E+01

Incremental Method, 2 GM 15 -4.614 E+02 +1.742 E+01
Eqs. (27), (28), (29)

3 GM 22 -4.614 E+02 +1.741 E+01

4 GM 33 -4.614 E+02 +1.741 E+01

Standard Form, Direct N/A N/A -4.614 E+02 +1.741 E+01
Solution of Eq. (13)

Table 2 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Second Design Variable, 32

Strategy Error Number of
Used Reduction Iterations dCx dC

d33  d# 3

0 GM 1 +2.343E +02 -3.655 E+01

1 M 11 +2.284 E+02 -2.616 E+01
Incremental Method, 2 GM 18 +2.284 E+02 -2.625 E+01
Eqs. (27), (28), (29)

3 GM 24 +2.284 E+02 -2.625 E+0

4 GM 31 +2.284 E+02 -2.625 E+01

Standard Form, Direct N/A N/A +2.284 E+02 -2.625 E+01
Solution of Eq. (13)

Table 3 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Third Design Variable, 3

17



Strategy Error Number of
Used Reduction Iterations dCx dC

d_4 d34

0 GM 1 -2.694 E+04 +2.213 E+03

1 M 10 -2.665 E+04 +1.659 E+03

Incremental Method, 2 GM 17 -2.665 E+04 +1.665 E+03
Eqs. (27), (28), (29)

3 GM 23 -2.665 E+04 +1.664 E+03

4 GM 31 -2.665 E+04 +1.664 E+03

Standard Form, Direct N/A N/A -2.665 E+04 +1.664 E+03
Solution of Eq. (13)

Table 4 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Fourth Design Variable, I4

Strategy Error Number of
Used Reduction Iterations dCx dC

d/65  d/#5

0 GM 1 -8.334 E+01 +7.905 E-01

1 M 3 -8.326 E+01 +4.500 E-01

Incremental Method, 2 GM 6 -8.327 E+01 +4.344 E-01
Eqs. (27), (28), (29)

3 GM 26 -8.327 E+01 +4.370 E-01

4 GM 46 -8.327 E+01 +4.365 E-01

Standard Form, Direct N/A N/A -8.327 E+01 +4.365 E-01
Solution of Eq. (13)

Table 5 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Fifth Design Variable, /5
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Strategy Error Number of
Used Reduction Iterations dCx dCy

d0 6  d0 6

0 GM 1 +8.628 E-01 +1.421 E+02

1 M 9 -3.657 E-02 +1.429 E+02
Incremental Method, 2 GM 15 -1.667 E-02 +1.428 E+02
Eqs. (27), (28), (29)

3 GM 22 -1.368 E-02 +1.428 E+02

4 GM 31 -1.370 E-02 +1.428 E+02

Standard Form, Direct N/A N/A -1.370 E-02 +1.428 E+02
Solution of Eq. (13)

Table 6 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Sixth Design Variable, 06

Strategy Error Number of
Used Reduction Iterations dC. dCY

d037  dL7

0GM 1 +2.120 E+00 -5.216 E-01

1 M 12 +1.444 E+00 -5.873 E+00

Incremental Method, 2 GM 18 +1.414 E+00 -5.877 E+00
Eqs. (27), (28), (29)

3 GM 25 +1.415 E+00 -5.879 E+00

4 GM 31 +1.415 E+00 -5.879 E+00

Standard Form, Direct N/A N/A +1.415 E+00 -5.879 E+00
Solution of Eq. (13)

Table 7 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Seventh Design Variable, #7
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Strategy Error Number of W C
Used Reduction Iterations dC38 d08

0 GM 1 -3.415 E-01 +2.353 E+02

1 GM 15 +6.281 E+0-0 +2.331 E+02

Incremental Method, 2 GM 21 +6.236 E+00 +2.331 E+02
Eqs. (27), (28), (29) ______________ _______

3 GM 28 +6.236 E+00 +2.33 1 E+02

4 GM 33 +6.236 E+00 +2.33 1 E+02

Standard Form, Direct N/A N/A +6.236 E+00 +2.331 E+02
Solution of Eq. (13) ______

Table 8 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Eighth Design Variable, /38

Strategy Error Number of W ~
Used Reduction IterationsdCdC

___ __ __ __ ___ __ _ __ ___ __ __ __ __d,3 9  d#39

0 GM 1 -1.366 E+00 -2.382 E+01

1 GM 12 -2.153 E+00 -2.082 E+01

Incremental Method, 2 GM 18 -2.107 E+00 -2.082 E+01
Eqs. (27), (28), (29) ______ ______________

3 GM 25 -2.107 E+00 -2.081 E+01

4 GM 31 -2.107 E+00 -2.081 E+01

Standard Form, Direct N/A N/A -2.107 E+00 -2.081 E+01
Solution of Eq. (13)______ _____________

Table 9 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, Ninth Design Variable, /39
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Strategy Error Number of
Used Reduction Iterations dCx dCydolo d3lo

0GM 1 +9.750 E-02 +1.144 E+01

I OM 7 +3.988 E-01 +1.157 E+01

Incremental Method, 2 GM 13 +3.903 E-01 +1.158 E+01
Eqs. (27), (28), (29)

3 GM 20 +3.886 E-01 +1.158 E+01

4GM 26 +3.886 E-01 +1.158 E+01

Standard Form, Direct N/A N/A +3.886 E-01 +1.158 E+01
Solution of Eq. (13)

Table 10 - Comparison of Sensitivity Derivatives, Incremental
and Standard Methods, Tenth Design Variable, 31o

Table 11 shows a comparison of total CPU times, where naturally the computational cost of
the incremental method depends heavily on the "strictness" of the desired convergence tolerance.
For only a two OM error reduction, the computational cost of the incremental and the standard
formulations are approximately equal. However, a tightly converged (four OM error reduction)
solution results in a factor of almost two greater computational cost for the incremental method
in the present example problem.

Strategy Error CPU Time
Used Reduction (Seconds)*

0GM 27

1GM 51
Incremental Method, 2 GM 68
Eqs. (27), (28), (29)

3GM 90

4GM 113

Standard Form, Direct N/A 66
Solution of Eq. (13)

Table 11 - Comparison of Total CPU Times, Incremental and Standard Methods
*All Calculations Performed on a Cray-2 Computer.
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It is noted that the sensitivity derivatives presented in the first row of Tables 1 through

10 (i.e., for a zero OM error reduction, which is one iteration of the incremental method) are

exactly the values which would be computed by direct solution of the standard formulation, if

the left-hand side coefficient matrix, [R], of Eq. (13) were approximated using the matrix,

[r] By comparison of these calculations in the first row with those in the last row of thePC v

tables (i.e., the actual results of the standard formulation), the significant error is seen which
would be generated in the sensitivity derivatives if approximations of convenience such as this
were introduced into the standard formulation of the equations.

3.2 External Flow - NACA 4-Digit Airfoil Problem

The second problem considered here is that of external flow over an isolated airfoil, and is
identical to the second example problem of Ref. 23. There pertinent details are found, including
the grid and boundary conditions used, as well as an explanation of the special treatment for the

grid sensitivity terms. The numerical solution of this laminar flow problem is for a freestream
Mach number, Mo, = 0.70, Reynolds number, REL = 5000, and angle of attack a = 0.00. The
airfoil shape is the NACA 2412, where the profile is defined by polynomial expressions in terms
of three parameters, which are maximum thickness, T--0. 12, maximum camber, C--0.02, and
location of maximum camber, L--0.40. These three parameters are defined here to be the design
variables, and hence define the elements of the vector, /.

In Ref. 23, sensitivity derivatives were computed (with respect to T, C, and L) for the

lift (CL) and drag (CD) coefficients. These terms were calculated in this earlier work using a
hybrid direct solver/conventional iterative approach in the solution of the sensitivity equations

in standard form (Eq. (13)). That is, a single direct LU factorization was applied to the central
bandwidth of the coefficient matrix; the relatively small number of implicit terms which fall
outside this main bandwidth (some at extreme distances because of the "periodic" boundary
conditions at the "wake-cut" of the C-mesh) were treated "explicitly," i.e., on the right-hand side
of the equations. Thus a conventional Richardson iterative cycle was established to account for
the periodic boundary conditions. However, despite the relatively small number of terms which
were treated explicitly, it was reported that because of the required use of the poorly conditioned

higher-order accurate coefficient matrix, the iterative strategy was at first divergent, and the use
of under-relaxation was necessary to force the procedure to converge. As in the first example
problem, the accuracy of the final results was successfully verified in this earlier work by finite
differences, and thus this consistency check is omitted here.

In the present application of the incremental strategy to this identical airfoil problem, the

elements falling outside the central bandwidth of the left-hand coefficient side matrix, [" ,were

simply neglected entirely. This of course constitutes the inclusion of a second approximation
of convenience in this matrix, in addition to the first-order accurate upwind treatment of the
inviscid terms. The analogous (but not identical) terms resulting from the C-mesh type periodic

boundary conditions in the matrix, [ l, are not and must not be neglected on the right-hand

side of Eq. (27), if the final sensitivity derivatives are to be correct. However, the treatment
of these periodic terms is explicit and straightforward since they are on the right-hand side of
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the equations. The resulting incremental strategy is again found to be convergent in the present
example problem, without the need for under-relaxation or any scheme to force the convergence.
As in the first example problem, the method is implemented by a single direct LU factorization

of the approximate coefficient matrix, [-, which is repeatedly reused in all subsequent back-

solving operations, for all iterations and design variables.
Table 12 shows the computed sensitivity derivatives of CL and CD with respect to ---

T, for successively larger reductions in the error, where the results of the present incremental
formulation are compared with the results for the standard formulation, taken from Ref. 23.
Tables 13 and 14 provide similar results except that derivatives with respect to/32 = C and /33
= L, respectively, are computed. Note that in these tables, the convergence of each method
is fairly good after a two OM reduction in the error, and excellent after three or four OM.
In addition, the converged results of the standard and incremental formulations are seen to
consistently agree with one another, as expected. Table 15 presents the number of iterations
required to achieve each level of error reduction, for each design variable, where the incremental
and standard formulations are compared. Finally, Table 16 compares the total CPU times which
were required in the calculations using the incremental and standard forms. For the present
problem, the incremental method is seen to be more efficient.

Lift Sensitivity Drag Sensitivity

Error dCL dCL dCD dCD

Reduction d/31  dT d/31  dT

Standard Incremental Standard Incremental

0 GM -9.334 E-01 -2.467 E-01 +4.723 E-01 +1.226 E+00

1 M -2.589 E+00 -2.939 E+00 +4.267 E-01 +4.353 E-01

2 OM -3.117 E+00 -3.126 E+00 +3.972 E-01 +3.938 E-01

3 OM -3.126 E+00 -3.126 E+00 +3.939 E-01 +3.938 E-01

4 GM -3.126 E+00 -3.126 E+00 +3.938 E-01 +3.938 E-01

Table 12 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, 61 = T (Maximum Thickness)
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Lift Sensitivity Drag Sensitivity

Error dCL dCL dCD dCD

Reduction dO - dC d0 2  dC

Standard Incremental Standard Incremental

0 0M +5.206 E+00 +4.706 E+00 +3.429 E-01 +6.778 E-01

1 0M +4.175 E+00 +2.973 E+00 +3.780 E-01 +3.785 E-01

2 OM +3.988 E+00 +3.976 E+00 +3.663 E-01 +3.640 E-01

3 OM +3.968 E+00 +3.968 E+00 +3.603 E-01 +3.603 E-01

4 OM +3.968 E+00 +3.968 E+00 +3.603 E-01 +3.603 E-01

Table 13 - Comparison of Sensitivity Derivatives, Incremental
and Standard Methods, fl2 = C (Maximum Camber)

Lift Sensitivity Drag Sensitivity

Error dCL dCL dCD dCD

Reduction d3 dL d,33  dL

Standard Incremental Standard Incremental

0o0M -4.293 E-02 -8.869 E-02 -3.899 E-03 -5.195 E-03

1 0M -1.466 E-02 -1.745 E-01 -3.422 E-03 -3.017 E-03

2 OM -1.869 E-02 -1.833 E-02 -3.334 E-03 -3.320 E-03

3 OM -1.819 E-02 -1.816 E-02 -3.304 E-03 -3.295 E-03

4 OM -1.816 E-02 -1.816 E-02 -3.290 E-03 -3.290 E-03

Table 14 - Comparison of Sensitivity Derivatives, Incremental and
Standard Methods, 33 = L (Location Of Maximum Camber)
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Error Number of Iterations Number of Iterations
Reduction Standard Incremental

T C L T C L

0GM 1 1 1 1 1 1

1GM 13 14 5 12 14 9

20M 64 39 24 136 45 32

3GM 219 188 49 239 203 91

4 GM 300 276 195 297 269 225

Table 15 - Number of Iterations Required, Incremental and Standard Methods

Error Total CPU Time (Seconds)
Reduction Standard Incremental

0GM 27 10

I0M 33 15

2GM 54 41

3GM 124 89

4 GM 191 127

Table 16 - A Comparison of Total CPU Times, Incremental and Standard Methods

4.0 Summary and Conclusions

It has been shown herein that for the future development and application of efficient iterative
methods for solving the aerodynamic sensitivity equations, there are significant advantages which
can be exploited within the incremental formulation which are not seen in the standard form
of these equations. These benefits are derived from the flexibility of the "delta" formulation,
which allows any convenient approximation to be introduced into the left-hand side coefficient
matrix (which operates on the "delta terms") without affecting the final computed values of
the sensitivity derivatives, provided the resulting sequence of successive iterations which are
generated converges. Future efforts in algorithm development can now be directed at solving the
sensitivity equations in delta form using conventional iterative strategies which are commonly
c. -ployed in solving the nonlinear flow equations. The goal is to adapt existing CFD flow solvers
in 2D and 3D with few or no changes to also solve the equations of aerodynamic sensitivity
analysis. In this regard, preliminary results obtained to date are encouraging; in the appendix the
feasibility of this proposal is confirmed in the example problems using a fully iterative solution
process.
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6.0 Appendix - Future Work, An Approximately Factored Method

Having developed and successfully demonstrated an incremental formulation which is flex-
ible in character for solving the sensitivity equations, future work in algorithm development for
the iterative solution of these equations will seek to adapt iterative strategies which are com-
monly used in the implicit time integration of the flow equations. To this end, a false time term,
which is the diagonal matrix, [at , is added to the left-hand side coefficient matrix, [ of
Eq. (27). This "time" term diagonal matrix is of course found in the implicit time integration
formulation of Eq. (10).

The addition of this false time term to each element on the diagonal of the coefficient matrix
in Eq. (27) is equivalent to the use of under-relaxation in the two-step incremental formulation
of Eqs. (27) and (28). Then, for small to moderate time steps, the resulting linear system of
Eq. (27) may be very efficiently solved (approximately) at each iteration (i.e., at each false time
step) using the spatially-split approximate factorization algorithm (AF) of Ref. 34. This basic
algorithm, which has many variations, is well known as a common strategy found in 2D and 3D
CFD flow codes for the efficient approximate solution of Eq. (10) at each time step.

With the introduction of the false time term to the elements on the diagonal, and the resulting
factorization error which is associated with the AF algorithm at each iteration (all in addition
to the error of the approximate first-order accurate upwind treatment of the inviscid terms), it
was not known a priori whether the resulting approximate coefficient matrix operator on the
left-hand side of Eq. (27) would be a convergent method for solving these equations. However,
the proposed AF strategy has been found to be convergent in application to the two previously
explained example problems of this study. That is, the algorithm was successfully used to
produce a four OM reduction in the average error (as defined previously) for the double-throat
nozzle problem and the airfoil problem.

Using a constant Courant number of 10 for each cell in the computational grid (i.e., using
local false "time-stepping"), for the double-throat nozzle example, Table 17 shows the computed
sensitivity derivatives of C, and Cy (along the lower wall) with respect to i31 through 11o,
following the four OM reduction in the average error, where the number of iterations required
by this algorithm to achieve this level of convergence is reported for each design variable. As
expected, these results shown here agree very well with those reported earlier for this example
problem, except some of the very small sensitivity derivatives show minor discrepancies which
prove to disappear when the AF method is used to reduce the error to a stricter tolerance than
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the four OM shown here. Table 18 presents a comparison of the total CPU time required in this
example using the AF method compared to the CPU times shown earlier for the other methods.

Design Number of Sensitivity Sensitivity
Variable Itcrations of Cx of Cy

/31 335 -4.926 E+01 -3.024 E+02

,32 277 -4.614 E+02 +1.741 E+01

/33 242 +2.284 E+02 -2.625 E+01

134 276 -2.665 E+04 +1.664 E+03

/35 259 -8.327 E+01 +4.370 E-01

36 278 -1.778 E-02 +1.428 E+02

37 225 +1.414 E+00 -5.881 E+00

38 317 +6.233 E+O0 +2.331 E+02

39 280 -2.109 E+00 -2.081 E+01

31o 243 +3.881 E-01 +1.158 E+01

Table 17 - Double-Throat Nozzle Problem, Approximately Factored
(AF) Incremental Method, Four OM Error Reduction

Strategy Total CPU Time
Used (Seconds)

Incremental, AF 144
Solver, (4 GM)

Incremental, Direct 113
Solver (4 GM)

Standard Form, 66
Direct Solution

Table 18 - Double-Throat Nozzle Problem, Comparison of Total CPU Times
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Using a constant Courant number for each cell of 20 for the airfoil problem, Table 19 shows
the computed sensitivity derivatives of CL and CD with respect to T, C, and L, and the number
of iterations required by the AF method are also given. As expected, the computed sensitivity
derivatives here are in excellent agreement with those reported previously for this problem. Table
20 is a summary of the total CPU times required in this example, comparing the present method
with the previously presented results.

Design Number of
Variable Iterations dCL dCD

dT, C, L dT, C, L

T 466 -3.126 E+00 +3.938 E-01

C 428 +3.968 E+00 +3.603 E-0l

L 360 -1.816 E-02 -3.290 E-03

Table 19 - NACA 2412 Airfoil Problem, Approximately Factored
(AF) Incremental Method, Four OM Error Reduction

Strategy Total CPU Time
Used (Seconds)

Incremental, AF 50
Solver, (4 GM)

Incremental, Direct 127
Solver (4 OM)

Standard Form, Hybrid 191
Direct/Iterative (4 OM)

Table 20 - NACA 2412 Airfoil Problem, Comparison of Total CPU Times

The preceding results are encouraging, and demonstrate the feasibility of the proposed
methods. Much work remains in selecting and refining the most efficient algorithms and
convergence accelerations methods (such as multigrid, for example) for use in the solution
of the aerodynamic sensitivity equations in 2D and 3D.
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Fig. (1) - Computational Mesh, 171x38 Points,

Geometry of The Double-Throat Nozzle Problem.

Fig. (2) - Mach Contours For The Double-Throat Nozzle Problem.
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